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Figure 4 — Identify feature points with emphasis signals
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Figure 6 - Computing an adjusted T-wave offset
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EXTRACTION OF CARDIAC SIGNAL DATA

RELATED PATENT DOCUMENTS

This patent document is a continuation under 35 U.S.C.
§120 of U.S. patent application Ser. No. 13/172,415 filed on
Jun. 29, 2011 (U.S. Pat. No. 8,433,395), which claims the
benefit under 35 U.S.C. §119 of U.S. Provisional Patent
Application Ser. No. 61/359,462, filed on Jun. 29, 2010, and
61/370,026, filed on Aug. 2, 2010; U.S. patent application
Ser. No. 13/172,415 is also a continuation-in-part of U.S.
patent application Ser. No. 12/938,995, filed on Nov. 3, 2010
(U.S.Pat.No. 8,632,465) and which claims the benefit of U.S.
Provisional Patent Application Ser. No. 61/257,718, filed on
Now. 3, 2009, and of U.S. Provisional Patent Application Ser.
No. 61/366,052, filed on Jul. 20, 2010, to all of which priority
is claimed via 35 U.S.C. §120 for common subject matter;
each of these patent documents is fully incorporated herein by
reference.

FIELD OF INVENTION

The present invention relates to measurement of cardiac
interval and extraction of other cardiac repolarization infor-
mation from an ECG of human or animal subjects.

BACKGROUND

The cardiac repolarization period of the cardiac cycle, pri-
marily consisting of the T-wave, is of interest for a variety of
uses, including the analysis of cardiac function. For instance,
repolarization abnormalities can be associated with danger-
ous arrhythmias, which are desirably detected for use in
assessing cardiac function, ongoing health monitoring and/or
treating cardiac pathologies. The QT interval (the time
between the start of a Q-wave and the end of a T-wave) is
frequently measured as an indicator of repolarization time
with longer-than-normal or shorter-than-normal QT interval
associated with possible risk of life-threatening arrhythmias.
Evaluation of QT interval as an indicator of risk of life-
threatening arrhythmias can involve measurement of average
QT interval, QT interval dynamics, or both. Regulatory agen-
cies can require that QT interval be measured in both animal
models and human subjects during the course of developing
new drugs as a means of assessing potential for drug-induced
arrhythmias. QT interval measurements are also used to guide
therapies in clinical care. Beyond measurement of QT inter-
val, cardiac repolarization can be evaluated for clinical care
and research using other methodologies including T-wave
alternans, T-wave complexity, T-wave variability, and T-wave
morphology changes.

Accurate measurement of QT interval has been challeng-
ing as a result of difficulties in accurately and consistently
identifying T-wave offset due to its flat pattern, especially in
the presence of noise. The accuracy of results produced by
current methods is compromised, however, by noise in the
ECG and by difficulty in accurately identifying T-wave offset.
Further, approaches to identifying T-wave offset have suf-
fered from an inability to accurately determine whether a
particular T-wave offset is accurate, or whether the result may
have been compromised due to the presence of noise, certain
arrhythmias or difficult repolarization wave morphology.
These and related matters have presented challenges to the
measurement of QT interval, assessment of QT interval
dynamics, and isolation of the cardiac repolarization signal of
an ECG.
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2
SUMMARY

Various aspects of the present invention are directed to
devices, methods and systems involving evaluating repolar-
ization activity of the heart as represented in the ECG of a
human or animal subject, in a manner that addresses chal-
lenges including those discussed above.

In connection with various example embodiments, T-wave
offset points for ECG signals are provided as an output, based
upon a noise characteristic of an ECG signal in a second time
window that includes at least a portion of the T-wave. In
certain implementations, the location of a QRS complex in
the ECG signal is identified and used for determining a first
time window of the ECG signal in which to search for the
T-wave offset point, and the T-wave offset point is identified
within the first time window.

According to another example embodiment, a T-wave off-
set point is identified in an ECG. The ECG is decomposed into
subcomponents in a second domain in which at least a portion
of the subcomponents representing noise are independent of
a portion of the subcomponents representing the signal. The
noise and signal subcomponents are separated, which sepa-
ration is used as a basis upon which the T-wave is provided.

The separation of the signal and noise subcomponents can
be accomplished in a variety of manners. In some embodi-
ments, the subcomponents are separated using one or more of
spatially selective filtering, principal component analysis,
independent component analysis and periodic component
analysis. One or more subcomponents associated with the
T-wave of the ECG are separated from other signal subcom-
ponents within the second domain and used to evaluate a
noise characteristic in the vicinity of the T-wave offset point.

According to another example embodiment, a noise char-
acteristic is computed for a portion of the T-wave where the
presence of noise can impact the accuracy of T-wave offset
identification. The noise characteristic is computed by sepa-
rating the T-wave energy and the noise energy in the portion
of'the T-wave and using the respective energies to compute a
signal-to-noise ratio or other measures indicative of the rela-
tive levels of signal and noise energy in the portion. T-wave
energy and noise energy in the portion can be separated by a
number of techniques including band-pass filtering, wavelet
thresholding, multidomain signal processing, or adaptive fil-
tering.

According to another example embodiment, an emphasis
signal is computed that exaggerates inflections in the signal
and transition points of the emphasis and denoised signals,
such as peaks, valleys, and baseline points, are detected to
identify the T-wave offset point. These transition points may
be detected in one or more of a variety of manners, using one
ormore approaches as described herein, such as via the analy-
sis of subcomponents separated in accordance with the above.

According to another example embodiment, the subcom-
ponents used to compute the emphasis signal are denoised
using at least one of spatially selective filtering, principal
component analysis, independent component analysis and
periodic component analysis to improve consistency and
accuracy of detecting transitions within the emphasis signal.
In additional embodiments, the denoised subcomponents are
used to reconstruct a denoised ECG.

According to another example embodiment, a validity-
type metric is computed to assess the validity of a T-wave
offset point, which can be used to automatically include the
T-wave offset point as an output indicative of an accurate
ECG characteristic. The validity metric is computed based on
noise (e.g., using a dynamic signal-to-noise ratio) computed
for a portion of the T-wave of a cardiac cycle as the ratio of






